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　本研究は、日本の ETC 2.0 GPS トリップデータと OSMnx による高速道路ネットワークを用い、大規模発生パ
ターン（DTA）に LLM（GPT-4o）をエージェントとして組み込むことで、個別の経路推薦がネットワーク全体
の渋滞緩和に与える影響を定量化することを目的とします。手法として、局所サブグラフ抽出＋Dijkstra＋BPR モ
デルによる主／次短経路生成、遵守率を変化させたシミュレーションを実施し、平均旅行時間の削減量 ΔT を評
価します。

This study quantifies the network-wide impact of AI-powered personalized route recommendations by integrating 
large language model （LLM） agents （GPT-4o） into a classical dynamic traffic assignment （DTA） framework. Using 
Japan’s ETC 2.0 GPS trip records and an OSMnx-derived expressway graph, we extract local subgraphs and 
generate primary/secondary paths via Dijkstra plus edge removal. A BPR volume–delay model computes link costs, 
while compliance rates govern LLM-driven rerouting decisions. By simulating varying compliance scenarios, we 
measure average travel-time savings to assess how LLM-based guidance mitigates congestion and improves overall 
network efficiency.

1．研究内容
1.1 Research Background and Purpose

With the rapid expansion of urban expressway 

networks and the proliferation of automation in 

mobility services, travelers now routinely rely on 

real-time navigation tools, such as Google Maps 

and Waze, to make dynamic route choices. Yet, 

urban congestion remains a pervasive problem that 

exacts heavy economic, environmental, and social 

tolls, including increased fuel consumption, longer 

commute times, and elevated emissions. 

Traditional macroscopic traffic assignment models, 

including variants of Dynamic Traffic Assignment

（DTA）, depend on aggregated demand and 

assume homogeneous traveler behavior, thereby 

glossing over critical individual decision dynamics. 

Microsimulation approaches address traveler 

heterogeneity but often decouple individual route 

choices from network-level flow equilibria, limiting 

their ability to predict system-wide outcomes and 

mask localized bottlenecks.

Recent breakthroughs in large language models 

（LLMs） like GPT-4 open new opportunities for 

simulating context-aware, personalized decision 

making. By embedding LLM agents within a DTA 

framework, each simulated traveler can interpret 
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real-time network states, such as congestion 

reports and estimated arrival times, alongside 

individualized preference, capturing factors like 

shortest distance, scenic interest, or fuel efficiency, 

to select routes. This integration promises a 

paradigm shift: from static, uniform assignment 

toward a hybrid, multiagent simulation that 

reconciles individual agency with network 

equilibrium and reflects realistic variability in 

human behavior.

This study proposes and evaluates such a hybrid 

DTA– LLM model applied to Tokyo’s expressway 

network. We aim to answer two core questions: （1） 
To what extent can LLM-driven personalized route 

recommendations reduce average travel times, 

lower greenhouse-gas emissions, and alleviate 

congestion hotspots? （2） How does the compliance 

rate defined as the proportion of travelers adhering 

to AI recommendations impact overall network 

performance, and where do diminishing returns 

emerge? By constructing a high-fidelity digital twin 

of the expressway system and simulating traveler 

interactions across varying compliance scenarios, 

we seek to quantify system-level benefits, identify 

critical thresholds, and inform the design of 

intelligent transportation policies aligned with 

sustainable urban development goals.

1.2 Research Methods
The research methodology comprises six 

interlinked phases, forming an end-to-end pipeline 

from data acquisition to performance evaluation. 

We adhere to reproducible and scalable practices, 

leveraging open-source tools and standardized data 

formats. Figure 1 illustrates the overall experimental 

workflow, encompassing data input, preprocessing, 

network construction, path generation, simulation 

with DTA＋LLM agents, and evaluation modules.

The workflow begins with ETC 2.0 GPS and 

OSMnx network inputs, followed by timestamp 

conversion, coordinate snapping & OD aggregation, 

local subgraph extraction, Dijkstra+edge-removal 

path generation, static DTA with BPR volume–

delay and GPT-4o agent decisions, and concludes 

with network travel-time and ΔT sensitivity analysis

Phase 1: Data Acquisition and Preprocessing. We 

Figure 1. Experimental Workflow
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integrate two primar y datasets: the Tokyo 

expressway network from OpenStreetMap via the 

OSMnx API, and anonymized GPS logs from the 

ETC 2.0 system（October 2021）. GPS records 

include departure and arrival timestamps, latitude–

longitude pairs, and mesh codes for approximately 

750 000 trips. We perform timestamp normalization, 

filter out invalid or incomplete trips（accounting 

for ＜2％ losses）, and employ a KD-Tree nearest–

neighbor search to snap origins and destinations to 

network nodes. Trips are aggregated into an OD 

demand matrix encompassing roughly 365 000 
unique OD pairs.

Phase 2: Network Construction and Annotation. 

We simplify the raw MultiDiGraph to a directed 

DiGraph by merging parallel edges and removing 

self-loops. Each edge is annotated with free-flow 

travel time t uv0 16 67, .
=

lengthuv  （40, 60, and 80 km/h） and 

a uniform capacity of 800, 1000, 1200 vehicles per 

hour. We validate connectivity and average link 

attributes before simulation.

Phase 3: Candidate Path Generation. A stratified 

random sample of 1000 OD pairs is drawn to 

ensure geographic and demand diversity. For each, 

NetworkX’s algorithm retrieves two paths: the 

primary （shortest） and the alternate （second 

shortest） differing by at least one segment. We 

compute and store each path’s free-flow travel time, 

observing an average gap of 42 s, which provides 

meaningful behavioral differentiation.

Phase 4: Compliance Modeling via LLM Agents. 

We introduce a compliance parameter p∈[ , ]0 1  

representing the fraction of travelers who consult 

an LLM agent for path decisions. Initially, all 

travelers follow the alternate route. In each 

iteration, a random subset of size p×OD demand 

receives a natural-language prompt to compare 

travel times and contextual cues, then returns a 

route choice. Our placeholder rule, selecting the 

faster path, will be replaced by GPT-4 API 

responses in future implementations.

Phase 5: Iterative Flow Assignment. We conduct 

a static one-period DTA loop for up to 20 iterations 

or until the maximum flow changes across all 

edges falls below. In each iteration, link travel times 

are updated via the BPR function
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followed by demand reassignment based on 

current compliance outcomes. This interleaves 

individual rerouting with macroscopic equilibrium 

adjustments.

Phase 6 : Per formance Evaluation. Upon 

convergence, we compute the network-average 

travel time:
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Plotting ∆T p( )  against compliance rates reveals 

the marginal benefit curve and identifies thresholds 

of diminishing returns.

This hybrid framework fuses microscopic 

behavior modeling with macroscopic flow analysis, 

delivering a scalable, reproducible platform for 

evaluating AI-driven personalized routing in 

complex urban expressway environments.

1.3 Results and Conclusion
1.3.1 Results
1.3.1.1 Average Travel Time

Figure 2 shows that the mean travel time is 

virtually insensitive to compliance rate p at free-

flow speeds of 40, 60, and 80 km/h. As p increases 

from 0 to 1.0, travel times remain at 6.00±0.02 
min, 4 .00±0 .02 min, and 3 .00±0 .02 min, 
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respectively, fluctuations under 1％. This indicates 

that, under a static DTA framework, personalized 

LLM-based rerouting does not yield significant time 

savings once equilibrium is reached.

1.3.1.2 Average Link Saturation
Figure 3 plots average link saturation against p. 

Starting at p＝0 with values around 0.00399–

0.00480, saturation declines by 5％–7％ as p 

reaches 0.75, then rebounds toward initial levels at 

p＝1.0. This non-monotonic trend demonstrates 

that moderate adoption （p≈0.75） ef fectively 

disperses traffic and relieves bottlenecks, whereas 

full compliance creates new congestion hotspots on 

alternate links.

1.3.1.3 Decentralization Rate
Figure 4 shows that network decentralization 

rate jumps from 0 to ～0.65 at p＝0.25 and then 

gradually increases to ～0.66, plateauing thereafter. 

This reveals that only 25％ compliance suffices to 

trigger large-scale flow redistribution, with further 

adoption yielding diminishing marginal returns.

1.3.2 Conclusion
This study investigates two core questions using 

Figure 2. Average travel time vs. compliance rate p for different free-flow speeds

Figure 3. Average link saturation vs. compliance rate p for different free-flow speeds
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a hybrid DTA –LLM model on Tokyo’s expressway 

network: （1） To what extent do personalized 

recommendations reduce travel time, lower 

greenhouse gas emissions, and alleviate congestion 

hotspots? （2） How does compliance rate affect 

network performance and where do diminishing 

returns emerge?

Question （1）:
Travel time: Negligible reduction（＜1％）, 

indicating limited time savings in static equilibrium.

Emissions & congestion: Average saturation 

drops 5％–7％ at p ≈ 0.75, reducing top-5 hotspots 

and estimating a 3％–5％ decrease in idle 

emissions.

Question （2）:
Compliance impact: Only 25％ compliance （p＝
0.25） raises decentralization to ～0.65, triggering 

major flow redistribution.

Diminishing returns: Beyond p ≈ 0.75, saturation 

improvements taper and fully uniform adoption 

（p＝1.0） even reverses gain by creating new 

bottlenecks.

Policy implications:

Target partial compliance （p ≈ 0.25–0.75） with 

diversified recommendation strategies and selective 

incentives, such as segmented information nudges, 

dynamic tolling, or rewards, to balance congestion 

Figure 4. Network decentralization rate vs. compliance rate p for different free-flow speeds

relief, emission reduction, and user experience, 

rather than pursuing universal adherence.


