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We aim to develop a micro-device capable of classifying EEG signals into Normal (N), Pre-seizure (P), and
Seizure (S) categories in real-time. We propose to implement physical reservoir computing (PRC) method on Si
MEMS resonators to achieve this goal. We successfully created the proposed MEMS devices and developed an
experimental setup for PRC implementation. Preliminary results suggest ~97% accuracy in N/S classification and
~77% accuracy in N/P classification. Further improvement can be achieved by increasing nonlinear response,
optimizing hyper-parameters, and collecting personalized training-data. We expect the results will contribute to

making a seizure-forecasting device in the future.

1. MFEN%E

1.1 Introduction

Epilepsy is a chronic disease of the central
nervous system that causes sudden lack of
consciousness and convulsive seizure potentially
leading to severe accidental injuries or death.
Seizures are caused by synchronized firing of
neurons, which manifest as a change in the
electrical activity (brain-wave) of the brain observed
in electroencephalogram (EEG) recordings (Fig.
1). The change in the EEG from ‘Normal’ state to
‘Seizure’ state is reported to happen gradually over

several minutes[1]. This gives an opportunity to

forecast an impending seizure so that the patients
and caregivers can take timely caution to avoid
injuries. To contribute to this purpose, we aim to
develop a micro-scale device that can process EEG
signals in real-time and classify them into ‘Normal’
(N), ‘Pre-seizure’ (P), and ‘Seizure’ (S) categories
(Fig. 1) [2]. We employ a hardware-based artificial
intelligence technique called ‘Physical Reservoir
Computing’ (PRC) using a microelectromechanical
system (MEMS) resonator to achieve this goal.
The main benefit of this approach is that the
resulting devices are portable, energy efficiency,

requires low training-cost for fast real-time
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Figure 1: Electroencephalograms (EEG) corresponding to ‘Normal’, ‘Pre-seizure’, and ‘Seizure’ states: data
from the Pompeu Fabra university’s database (artefact-removed) [2]. Normal and pre-seizure signals are
collected topically while seizure signals are acquired intracranially.

processing that does not need access to cloud or
internet. Accurate classification between Normal/
Seizure signals (N/S classification) can facilitate a
Seizure-detection system, while accurate
classification between Normal/Pre-seizure signals
(N/P classification) can allow a Seizure-forecasting
system. We successfully developed the proposed
PRC system and preliminary analysis suggests N/
S classification accuracy ~97% and N/P
classification accuracy ~77%. We present further
discussion on PRC implementation, classification

results, and discussion on potential improvement.

1.2 Methods
1.2.1 Reservoir computing (RC)

A time-domain signal (Vi) is nonlinearly
transformed (V) : Vour (tn) = F([atin * Vin (tn) + o *
V_out(t,;)]), where the subscript ‘n’ on time (t)
represents the n-th segment of the input/ output
signal, a;, and og, are scale-factors applied to the
input and the feedback (in this work, ag,=0), and
F represents a nonlinear function. V. (t,) segments
are divided in I time-intervals of length 6 and each
interval is used to construct an element (x;) of the
reservoir state vector (X). Then, for a typical
classification task, X is mapped to a desired
reservoir output (b) assigned for a given class of
the input signal, b =W, X, where the elements of
the W, vector are optimized during a training

phase. Only W, requires training, which gives RC
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Figure 2: Schematic illustration of the fabrication
steps implemented for creating the MEMS
resonator devices from SOI wafers.

its reputation as a low-cost training algorithm.

1.2.2 Device fabrication method

Devices are fabricated using silicon-on-insulator
(SOI) wafers with 8 um thick, p-type, single-crystal
Si device layer, ~1 um thick SiO, layer, and ~400
um thick Si handle layer. First, Cr/Au metal thin-
film (~100 nm) electrodes are deposited on the
device layer. Then, device areas are patterned
using photoresist (OFPR) and etched by deep
reactive-ion-etching (DRIE). For these two steps,
UV photolithography method is used using Cr
photomasks fabricated by a direct-laser-writing
instrument. Finally, the resonator structures are

released by vapor-HF etching of the SiO, layer.

1.2.3 PRC implementation strategy

For implementing RC via a physical system
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(PRC), which in our case is a MEMS resonator,
the dynamics of the physical system perform the
task of nonlinear transformation (F) of the input
electrical signal (Vggg). Real-time electrical EEG
signals are created (from pre-recoded data taken
from real patients[2]) using an arbitrary function
generator (AWG, Moku-Go). Signals are pre-
processed and amplified using a custom-made non-
inverting amplifier and introduced to the resonator
as a dc-bias voltage (Vy.). An ac signal (V,.) from
a lock-in amplifier is introduced to the actuation
electrode. The resulting electrical signal
corresponding to the motion (y(t)) of the micro-
resonator is captured by the capacitive detector,
amplified by a trans-impedance amplifier (TIA)
(Fig. 3A) and detected by the lock-in amplifier. The
output signal is essentially related to the solution of
the duffing equation: my + by + ky + ay® = Fy (Vggg)
cos wt, where m, k, a are the effective mass, linear-
stiffness, and cubic-stiffness of the resonator, b is
the effective damping coefficient, Fy(Vggg) is the
amplitude of the periodic (27/w) electrostatic driving
force. Then, reservoir states are determined from
the output signal (Fig. 3B-C).

BEANZ - T2 -8R - BE 1 FB)

1.3. Results
1.3.1 Device fabrication and characterization
MEMS resonator devices with integrated
electrostatic actuators and capacitive detection
electrodes are successfully fabricated with the
method illustrated in Fig. 2. Scanning-electron-
micrographs (SEM) of a fabricated device is shown
in Fig. 3B. Resonators are ~300 xm long, ~1 um
wide (height ~8 xm) and oscillates in in-plane,
fundamental flexural mode. Devices are characterized
inside a vacuum chamber (~1 Pa). Typical
frequency response (forward-sweep) is shown in Fig.

4, which shows a hardening-type cubic nonlinearity.
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Figure 4: Frequency response of a MEMS resonator
device during a forward frequency-sweep showing
hardening typed cubic nonlinear behavior.
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Figure 3: (A) Device on a circuit-board designed for electromechanical characterization, (B) SEM image of
a Si MEMS resonator device, (c¢) Illustration of the PRC implementation strategy for EEG signal
classification by the MEMS resonator device.
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1.3.2 EEG classification

A total of 10 EEG samples from each of N, P, S
categories are injected into the MEMS resonator
(reservoir) and corresponding output signals are
acquired (section 1.2.3). Output signals
corresponding to each type of signal are split into
140 EEG segments and divided in 80:20 ratio for
training and testing, respectively. After training the
W, vector with EEG segments in the training-set,
the task is to correctly identify the type of the
EEG-segments in the test-set (Fig. 5A-B). We
perform a 5-fold cross-validation to avoid train-test
selection-bias and estimate the average

classification accuracy. Preliminary analysis
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suggests that between N and S type signals a
classification accuracy of ~97% can be achieved.
However, between N and P type signals,
classification accuracy is about 77 %. We found that
the classification accuracy significantly depends on
the choice of hyperparameters, such as 0, and
Ridge-parameter (1) as shown in the heatmaps of
Fig. 5C-D.

1.4 Discussion

It is worth noting that high classification
accuracy between N and S is expected due to large
differences in ‘amplitudes’ of these signals.

However, N and P signals having comparable
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Figure 5: Results for (A) N/S and (B) N/P classification tasks, and heat-maps showing average
classification accuracies for 5-fold cross-validation task corresponding to 6 , A variation for (C) N/S and

(D) N/P classification.
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Figure 6: MEMS resonator’s output signal corresponding to 1-0-1-0.... input bitstream (square-wave) at
different frequencies. The output nearly (linearly) follows the input with over/undershoots and transient

behavior.

amplitudes poses a tougher challenge. Although,
the N/P classification can potentially be improved
by further optimizing hyperparameters, we speculate
that a potential cause for relatively low accuracy
can be due to a lack of sufficient nonlinearity in the
system. When a simple 1-0-1-0... bitstream is
given as input (Vg), we observed that the
resonator’s output nearly follows the input (with
overshoot/undershoot) (Fig. 6). Thus, we believe
increasing the nonlinearity of the system may lead
to better N/P classification result. Implementing
feedback (echo) in the system (ag #0) can also
improve N/P classification. Also, we noticed (by
visual inspection) significant qualitative variation in
the EEG data (of same type) perhaps across
different patients, which can make the N/P
classification accuracy dip close to 50% (for Fig.
5D, P type data with similar qualitative features are
considered). This indicates that collecting EEG
data from individual patients for training may be

required for effective N/P classification.

1.5 Conclusion

We developed a MEMS resonator-based PRC
system for real-time EEG classification.
Classification accuracy of ~97% is achieved in N/
S classification, and an accuracy ~77% is achieved

for N/P classification when P signals having similar

qualitative features are considered. We believed, a
more rigorous optimization of hyperparameters,
increasing the nonlinearity in the system’s
response, and collecting personalized training data

can improve classification accuracies.
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