高精度数値流体シミュレーションと最適化手法による ウィンドファームの風車配置の最適化

代表研究者 Goit Jay Prakash 近畿大学工学部機械工学科 助教

1. 研究目的

近年多数の風車を一ヶ所に設置し、集中的に発電 する大型陸上・洋上ウィンドファームが増加してい る。世界最大級の洋上風力発電所はイギリスの London Array (175基の風車)とWalney Extension (87基の大型風車)ウィンドファームで、それぞれ 630MWと659MWの発電を行う。日本でも2019年に 政府が洋上風力発電に適した11の「促進区域」を指 定したことから大型洋上風力発電の開発が進んでい る。しかし、このような大型ウィンドファームでは、 風車間の後流の相互作用により発電出力が低下し、 単独の風車に比べて出力が40%まで低くなるケース もある(Barthelmieら, J. Phys: Conf. Ser. 2007)。ウ ィンドファーム内の風車の配置を決めるとき、一般 的には簡易的なウェークモデル (Jensen, Ris-M-2411 1983) が使用される。しかし、このよ うなウェークモデルではウィンドファーム内の複雑 な流れを考慮することが出来ないため、効果が大い に問われる。従って、ウェークの相互作用を考慮し、 ウィンドファームの風車配置の改善により、ファー ム全体の発電出力の向上を目的とし、以下3点に着目 した。

- (1) ドップラーライダーによるウィンドファーム開発サイトでの風況計測技術の開発
- (2) ウィンドファーム内の風車の再現と風の計算用 の数値流体シミュレーションツールの開発
- (3) ウィンドファーム内の風車配置改善による発電 出力の向上

2. 研究内容

上記の目的にしたがい、本助成期間に以下3点 に着目し研究を実施した。

2.1 ドップラーライダーによるウィンドファー

ム開発サイトでの風況計測技術の開発

研究に必要な実測データはドップラーライダーを 用いて収集する予定であった。ドップラーライダー は、高高度および幅広い範囲での風速の計測が可能 であるという利点があるものの、従来の超音波風速 計やカップ風速計と同程度計測精度が得られるかは 明確ではなかった。本研究では、鉛直ライダー (Windcube V2)により計測を行い、隣接する観測タ ワーに設置した風速・風向計と検証を行った。ライ ダーと観測タワーは図1 (a) と(b)に示す、産総研福 島再生可能エネルギー研究所のものを使用した。ド ップラーライダーの計測から風速を算出するために DBS (Doppler Beam Swinging) 法を用いた。

図1(c)はドップラーライダーによる計測した10分 間の平均風速と標準偏差を高度 57 m に設置され た超音波風速計の計測値との比較を示す。ドップラ ーライダーの平均風速は超音波風速計の平均風速と 精度良く一致しており、決定係数 (R²)は0.995と回 帰線の傾きは1.0である。しかし、標準偏差の場合バ ラツキが大きく、決定係数は0.977である。図1(d) は乱流強度を風速の関数として示している。計測し たサイトでは、ドップラーライダーから得られた乱 流強度は超音波風速計の乱流強度に比べて約2%高

(d) 乱流強度と平均風速の関係

図 1. 鉛直ドップラーライダーによる風況計測精度の評価

い結果が得られた。この差はあんまり大きくない ものの、本サイトに設置する風車の疲労荷重の予 測に影響与えると思われる。さらに、計測した乱 流強度分布は IEC (International Electrotechnical Commission)規格に定義されている全ての乱流カ テゴリーより高いため、サイトの乱流強度を考慮し た'class S'風車が必要となる。日本及びアジア諸国 の場合、乱流強度が高い地域が多く存在する。ここ では示していないが、風車に作用する極値荷重評価 に必要なピーク風速の比較、研究に良く用いられる NREL-5MW風車を対象にドップラーライダーと超 音波風速計を用いた場合の発電量分布と荷重を評価 した。

2.2 数値流体シミュレーションツールの開発

流体シミュレーションではOpenFOAMというオ ープンソースツールを使用した。対象とした風車は ロータ直径100mの大型風車であるため、大気境界層 全体をシミュレーションする必要があった。流体シ ミュレーションはラージエディシミュレーション (LES)を用いて行った。その支配方程式はフィル ターされたナビエストークス方程式である:

$$\frac{\partial \tilde{u}_i}{\partial x_i} = 0 \tag{1}$$

$$\frac{\partial \tilde{u}_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} \left(\tilde{u}_{i} \tilde{u}_{j} \right) = -\frac{1}{\rho} \frac{\partial \tilde{p}}{\partial x_{i}} + \nu \frac{\partial^{2} \tilde{u}_{i}}{\partial x_{j}^{2}} + \frac{\partial \tau_{ij}}{\partial x_{j}} + f_{i} \qquad (2)$$

$$F_{i} = \frac{1}{2} C_{T} \rho u_{d}^{2} A_{d} \qquad (3)$$

$$f_{i} = \frac{1}{2 dx} C_{T} \rho u_{d}^{2} \qquad (4)$$

ここで $\tilde{u}_i = [\tilde{u}_1, \tilde{u}_2, \tilde{u}_3]$ 速度、 \tilde{p} は圧力、 ρ は空気 密度、 ν は動粘性係数、 τ_{ij} はサブグリッドスケール (SGS) モデルである。 f_i は風車が流れに与える力を 示す。後で説明するように、本研究ではこの力は actuator-disk model (ADM)によりモデル化した。 大気境界を数値計算で正確に再現する際、精度の 高い流入境界条件が課題である。本研究では流入風 を生成するために風車無しの領域で主流方向に周期 境界条件を設けて計算を行った。そして、スパン— 鉛直方向の断面の各時間ステップの風速データを保 存した。実際の風車やウィンドファームの流体計算 時に保存していた断面のデータを流入風の境界条件 として使用した。

図 2. Actuator disk モデルの概要

風車周りの流れのシミュレーションでは、風車の 適切なモデリングが大きな課題となる。しかし、羽 根上に細かい格子を生成し解析するのは実用的では ない。そこで、本研究では風車のロータのモデリン グをactuator diskモデル (図2を参照)を用いて行っ た。Actuator disk モデルの力は式 (3)のように定 義し、式 (2)の単位質量当たりの力 f_i は式 (4)から 求めた。ここで、 C_T は推力係数, u_d は風車上流側に おけるロータと同じ面積での平均風速、 A_d はロー タ面積である。

2.3 ウィンドファーム内の風車配置改善による発電 出力の向上

開発した数値流体シミュレーションツールを用 いてウィンドファーム内の流体解析を行った。本 研究では、2種類配置(格子型とスタッガード型) のウィンドファームを対象とした。両ウィンドフ ァームには直径 D=100m の 16 台の風車がある。 風車間距離は流れ方向に $S_x = 7D$ 、スパン方向 に $S_z = 4.5D$ とした。スタッガード配置の場合、 各風車は上流と下流の風車よりスパン方向に 2.25D ずらして設置した。計算領域は流れ方向、 鉛直方向、スパン方向にそれぞれ 5.1 km, 1 km, 2 km をとり、格子数は 850, 200 と 400 にした。合 計格子点数は 68,000,000 と大型計算になったため、 東京大学が運営する Oakforest-PACS スーパーコ ンピューターを使用した。最大で 544 のプロセッ サを使用し、並列計算を行った。

流入風に関しては、洋上ウィンドファームの建 設が予定されているサイトの年間平均風速(7.5 m/s)になるように流入風を生成した。図3はウィ ンドファーム内の風車ハブ高さでの水平面の平均 風速を示す。ここで黒い縦線が風車の位置を示す。 格子型ウィンドファームでは、列毎に風速の低い 後流が出来ていることが観察される。その結果下 流にある風車位置での風速がウィンドファーム上 流の風速に比べ大幅に低くなる。一方、スタッガ ードでは流れ方向の風車間距離が2倍になり、上 流の風車の後流がある程度回復し、下流の風車の 位置での風速が比較的に高い。

図3. ウィンドファーム内の平均風速場. ハブ高さでの水平面を示している

図4.時間平均及び横列平均発電出力の比較

この2種類の配置の発電出力の時間平均及び横 列平均を風車列の関数として図4に示す。結果は 横一列目の平均発電出力で正規化している。格子 型配置の場合、下流の列では発電出力が急に低下 している。一方、格子型配置に比ベスタッガード 配置の場合、下流の列の発電出力は高い。今回の 計算のウィンドファームの大きさでは、配置改善 による発電出力向上率は51%である。したがって、 ウィンドファームの配置の最適化は発電出力の向 上につながると思われる。しかし、ウィンドファ ームが大きくなればなるほど、最適化の効果が低 下する。そして、最適な配置を算出することも難 しくなると思われる。

3. 発表(研究成果の発表)

- Goit, J. P., Shimada, S., Kogaki, T., "Can LiDARs Replace Meteorological Masts in Wind Energy?", Energies, Vol. 12 (3680), pp. 1-24, September 2019.
- (2) Jay Prakash Goit, 嶋田進, 小垣哲也, "ドップラ ーライダーによる長期間の風速及び乱流計測 の評価", 日本機械学会 第97期 流体工学部 門 講演会 豊橋 2019年11月
- (3) Goit, J. P., Shimada, S., Kogaki, T., "Reliability of long-term Lidar-based wind measurements for various wind energy applications", 72nd Annual Meeting of the APS DFD, Seattle, WA, USA, November 2019
- (4) Goit, J. P., Shimada, S., Kogaki, T., "Accuracy of wind turbine power and loads estimation

from LiDAR-measured wind speeds", 41st Wind Energy Symposium of JWEA, Tokyo, December 2019.